

Q - total amount of heat hontrevel (Toules) 1 - best trouber rate (Wotts)

each prime represents a unit of onew

e" - heat blux

P=) 6" · v) A

e'- heat note per unit lengths [Watt/m]

e'= de 4= e'L

0" - Heat rote per unt volume

e=)e" &V

Unally one o" to wentont over volume $q = q''' \vee$

Three Modes of Heat Transfer Conduction, Connection, and Nadiation

Conduction

-transfer of thermal energy through a stationary

substance due to a temperature différence
- orises brom minoscopiu molaulo motions
Pourier Low of Heat Conduction
Heat plux in X- direction (1-0) $Q'' = -1 \frac{dT}{dx}$
Multidimensional Heat Plux (3-0)
₫"= - K ♡T
heat blow brom hot to cold
Convertion transfer of thermal energy by blue movement
Connection = Conduction + A direction
moderne motion alustom volumber
- 4 dones of cometron
O bourd cometroi
- bon pump etc - uning external poner
(Pree) Convertion
- hot fluts rise, will blut with

Lectures Page 3

3 Boiling. O Condensation

Lotent heat tromber by phase change

Nentrons low of Coultry

e"= h (T-Ta)

Temp ob enviormenent dig rungere temp

h - heat transfer well-mind

Nochetien

- heat transfer due to emission / obsorbtion ob electromogratic energy by matter

. Mr. / Mr. Lann

5 telon - Bottymon Low

- Blockhody emissie poner

E6=074

Stefan Bottynon constant

5.67.108 W/m2-KH

- Heat emitted per und was by on alded runbare (Black Body)
- temp dependent

Lectures Page

Robustine Plux: Special Cone

("= 60 (T4-Tsn)

temp of runoustry 3- mot necessarily rome

temp of runoustry 3- on To

temp of runouse

outes

All there equations depend on T

What one E8 and q"

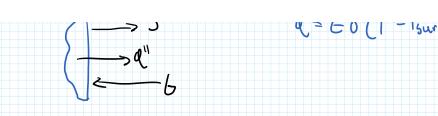
E: Emmissive proner - total amount of radiust everyy per unit onea

E= E E b

() blockhody emmissive poner

(emissivity. A meansure ob how rell the surpose emits

04 E 41


drabation (6)

- tital amount of radius everyy per unit over landing on unbore Nadionals

- total amount of rodion't energy per unit used

Flux

- robistrie flux is the balance between Joul 6 i.e. met energy per unit onea bearing the surbone

My des a blodhody, p=0 => J=E=EE8

How do neget temperature T

QU=Q-W work done by system

Charge in head added to everyones a process

1 = = q- V

Etit = KE+PE+U U=U+ U den + Unu + Uelec + ...

medianish energy thomal often forms

Lo UT = Uremille + Ur whent

Ett = Est + Est, other

thermal/medianial energy

Èm and Éant: energy blong avors surberne The Vout of the V

Ég: thermal generation in CV

Est? rote of thermal energy stored in (V)

Èn-Eout = v- Wmech ? Net everyy in

Artises from unbose thenomena such as

- Radistion - Contribute to q term
- Consection - Constitute to q term

Emergy 6 enerations - voluntrii

From Gelor

Est=NE+PE+Ut

negled this otten

Est= pVcp dt temperature

denotes perilic heat

Everyy & dome to bruis - lommon ossuption Estņt

~~ ("" V g Vip dt = e- Wment Eg net whow rate Themal Medianul of themal/mech energy every tired in object

met generation rate of themal + much energy due to every comesium from other bornes

Every Bolome Exorphe

Est = Ein-Eout + Eg Boephite Tp

Eg= e''V Egt= & VCp It, Wentily not willow En Eout energy generated by induction

Em-East = Q-Wmenh

Londution to bottom plate

Londution 5 rates w/ and

Londution w/ Trall

Ein-Eout = - (" comby plote A8 - (" com ain A5 - (" rody rolls A5

= Np ltp - h(t-To) A5 - EO (The Timely) A5

DGV dt = No dtp Ao-h(t-To)As-60(t4-Tould)As+q" V
Trom to From To

Robition: Chapter 12

Emission / Absorbtion

Emission

- transtion brom higher > boner every level

- photon to emitted

- propagates outrand from material

Abrohlin

- photon & obserhed - Transtion from loves to higher level

Eletromegetri spetrum

-themul robidion vorelengths 10 m-10 m

UV Vis IR

put of

Motter is needed to obsort / generate radiation - counst have every w/o atoms / moderales
- Matter is not needed to propagate radiation - until conduction / convertion

- con travel through bolumn - it can also travel through matter

Volunetic heating Chesting from within)

- Eq = 0

Nobulia

- origin to lower every level hosstriss

- only mode of heat transfer in volum

- injustant in nowin and high temp

The department Compres

1 Partiguity vs. Vonportupiting Medium

- medium is stubb between objects

Partiquiting
- con relatent, retter, obsorb
- con also emitt reliation

Non-Portupita

- whatin pones through n/ no drouge

- Vouwn (often omme deen an)

Ex: Earth Atmosphera

- rolor robustion on outside of atmosphere

- mot the rune os landing on earlies surface

rutteriz / obsorbtions Leves to lots of blue light being swittered why the shy is blue -Will usually deal or mon-portuguiting medium (runptibyjn assumption) - We will owne Opeyne unforces in this dos -ultre low trongrowing (= 0) - robustion is only obsorbed on rungue Robutie Properties - eministy (E) 3 obten totulated bos Sublement runhous - Aboutitooh (a)

- Neblestinto (P)

- Properties Depend on wonelength

- example SI photorrotter droutton - perciend when the

- 5 retrol Robutum

- O nection Surpase Robertion

How much reduction learning one object modes it to mother;

depends on median, internets and geometris

- distensity

- anount of robush every in a greater direction

- Surpase E mission

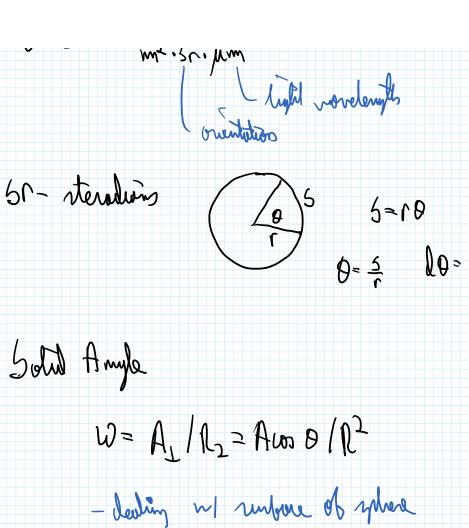
- early every in all direction (Q each point)

- each very contains on entre specimen

- E mittel yeatral internity

Inje (xy, h, D, d, T)

Temerature


Interrity

Loution length orientation

on runhuse (onyle)

A nue roberties à vintons avos rubere - boent depend on & g

Unity m2.5r. jum

QW= QA-12= DA 609 112

Fmilled Total Outenity Integrated over all wonderyths

 $I_{e}(\theta,\phi,\tau) = \int_{\lambda=0}^{a} I_{\lambda,e}(\lambda,\theta,\phi,\tau) d\lambda$ "A dain up interrities of all lights"

Emissie Poner, E		
- crentity run mound - integrate over hemisphese	dione unboil	
$E'(1) = \int_{T^{2}}^{T} \int_{U}^{U}$	1 ((() d) () () () () () () ()	Øþ
5 petral emmène pone	mornal (normal	rolid angle
5 pertuly Timed "6 ro	n Lights 11 you plonts	
EM = Som EX	(7) & \(\delta\)	
total emmis	ne poner	
Weel to brish spectral into	ēnaly	

Internity __ radiation ~/ direction

omme emmission is uniform over unbare

Emmme Poner

- robinte of human batume are turn up neutribore

Why interprete over Hemisphere?

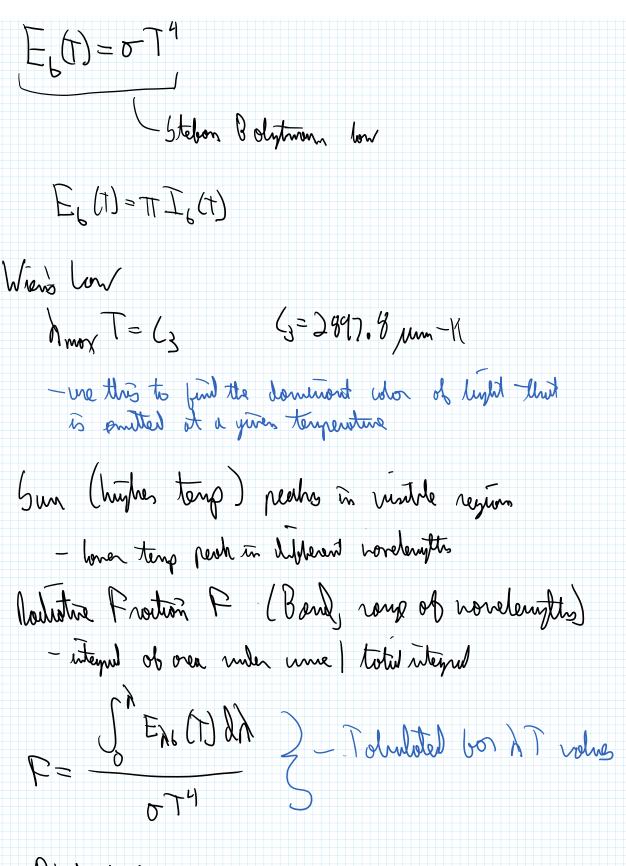
5 retrol

- novelength bependant

Total

- Spectral integrated over all vove lengths

5 petrul Internity


 $E_{\lambda}(T) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda e}(\theta, \phi, T) \cos \theta \cos \theta$

- we need I/ge

Block Body Spectral Internity

 $C_1 = 3.742 \cdot 10^9 \text{ Wum}^4/\text{m}^2 = 2\pi h c_0^2$ $C_2 = 1.439 \cdot 10^4 \text{ um} - K = h c_0 / K_B$

- peak bor each temp
- os TT, peaks whith to labor and minues in magnitude
- huge magnitude innere os TT

- con obsorb radiation only in certain range of brequences

What about
$$\int_{\lambda_1}^{\lambda_2} E_{\lambda} b$$

$$= \left(\frac{1}{1000} - \frac{1}{1000} - \frac{1}{1000} \right) = \frac{1}{1000}$$

E musuit

$$N=J-b$$

$$=E+Pb-b=EE_b+6(1-p)=EE_b-6(d+7)$$

$$=E+Pb-b=EE_b+6(1-p)=EE_b-6(d+7)$$

$$=E+Pb-b=EE_b+6(1-p)=EE_b-6(d+7)$$

Emmissints = robition entited from real unberg robition emitted from Vloubloods News

Wiend Dindoument Low max T = court

Bond, Robertion Provition

Diffue, mon-diffue

Ly internity courted in dibberard directions is dibberard - ends none interests in all dietions

Eminuty

- depends on mony fortos - moternil, unboue condition - dietion, temperature, novelengts

Types of Emiswith

- spetral dietion

- titol dietional

 $\angle_{\lambda^{0}}(L) =$

Ine (8 97) ING (T)

Ie (0,0,T) 60(T) =

 $I_b(T)$

-Spectral Hemispherical
$$E_{\lambda}(T) = \frac{E_{\lambda}(T)}{E_{\lambda}(T)}$$

Orlopus A ssuption

-mo onywhor dependance of restration - only lead of herrisphenial

$$E = \frac{E}{E_0} = \frac{E}{674}$$

$$= \int E_{\lambda} E_{\lambda} = \frac{E}{\lambda} = \frac{E}{\lambda}$$

Use Rediction & northern bor merenise interpol Anallation

Key Vilherma trebun chimetri dreubent Spectral dinternity In, in (4,7,0,6) 5 pectral duration 6/ = 24 2 1/5 the roo we godd radarband late] 6= 5 67 81 natabanh srufti - robition to insulent equally from all direction 6/2 TI I in the differe core Veling Absorptivity and Rebleitivity

notation believe = thirthooks

Lectures Page 24

5 restrol Dependonne of Absorbtists
O Merent that ob Nebletunts
reflectants =
I Detr = () L coulted + rebleted
Vie J instead of E
Why should be use about yested rodutive properties
- enjurées volutie properties to ochrere certain results
More 6 voy Surbore
La emitts, abouts, reldits = in all directions
Q= E
Gray-properties are the some of all novelengths

Tuesday, February 16, 2021 12:04 PM

Spatial Total
$$E_{\lambda} = \underbrace{E_{\lambda}}_{E_{b,\lambda}} \qquad E_{b}$$

$$\alpha = \frac{6 d a \lambda}{6 \lambda}$$
 $\alpha = \frac{6 d a}{6}$

Vilhure Grey Surbone 2= E - interrity mot dependent on wovelenith / anyle

Ney grestion

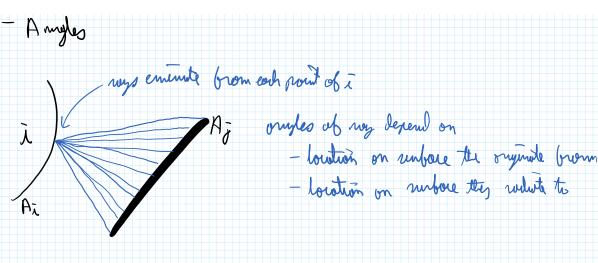
-how much roduction bearing one unlove makes it to omitted

- her much roduction bearing medium

- ne often ossume mon-portugating medium

- intensity of roduction bearing

geometry


Lo forms of dropter B

Heat Note brom Subare i to subore j ie. un > volon ponel

Vepende on

- Areas ob objects

- Distances

Break Surposes dute Differential Areas

Analyze a right ray

Write expression for differential heading

Ai dai

R

Con rong depending on dai dai

 $\int_{\bar{\lambda}}^{2\pi} \int_{0}^{\pi/\lambda} \int_{0}^{\pi/\lambda} I_{e+\zeta,\bar{\lambda}}(\theta, \phi) \cos \theta_{\lambda} \sin \theta \, \theta_{\lambda} \, d\phi_{\delta}$

Total Emilled + Nebreted intensity coming brown surface is

 $Q_{\lambda \sim 1} = \int_{\lambda} \int_{\lambda} d\lambda_{\lambda} = \int_{\lambda} \int_{\lambda} \int_{\lambda} d\lambda_{\lambda} d\lambda_{\lambda$

(but how much certically lands on unbare j?) Wont to use loging DW, = DA, wo 0, /22 DW == = DA Low Dherm 12 = m Di lo, loi Pino - Spi Terri (Dist) (O20) WOD DA DA Integrand - I errigger di out a levent en mentier roy Nonza of Oi, 07

- mje of A;

Internating over SA; SA; pais

Assure Generale Is disture

$$Q_{\bar{\lambda} \to \bar{\gamma}} = \int_{\bar{\lambda}} \iint_{R_{\bar{\lambda}}} \frac{\cos Q_{\bar{\lambda}} \cos Q_{\bar{\beta}}}{\pi R^{2}} dA_{\bar{\lambda}} dA_{\lambda}$$

Speril lose Aj, An 2 < R2 3 - roys one essentially 1

Example 6 is coming only from furnale

$$C_{1} = J_{1} \int_{A_{1}A_{0}} \frac{1}{1000_{1} \cos \theta_{1}} \int_{A_{1}A_{1}} \int_{A_{2}} \frac{1}{1000_{1} \cos \theta_{1}} \int_{A_{1}A_{2}} \int_{A_{2}A_{3}} \frac{1}{1000_{1} \cos \theta_{2}} \int_{A_{1}A_{2}} \frac{1}{1000_{1} \cos \theta_{2}} \int_{A_{1$$

= GRAQ

Assume AL, ApeLL2

GAAR = 5p (0000 MARR

Thom

Solve for this

Ext + 98p levere its abole

Thursday, February 18, 2021 12:08 PM

Lost time

heat rute leaving Ai landing on Ai

$$Q_{\lambda \to \hat{j}} = J_{\hat{\lambda}} \int_{A_{\hat{\lambda}}} \int_{A_{\hat{i}}} \frac{\omega \theta_{\hat{i}} \omega \theta_{\hat{i}}}{\pi R^{\lambda}} dA_{\hat{i}} dA_{\hat{i}}$$

Spend Core, Arond Ai KR? $q_{i\rightarrow i} \approx J_i \frac{\log g_i \cos g_i}{\pi R^2}$ Ai Aj 3 - roys are nearly pould

View Factor (Fij)

- Known so configuration or shape forter

- Simple may to about for geometry when adulating roduction exchange between surfaces

-Allows for guilt colubtions of qis

- Physial Meaning

- breation of robotion leaving rudgere is that is

$$F_{ij} = \underbrace{q_{\lambda \rightarrow j}}_{J_i \cdot A_i} \qquad 0 \leq F_{\lambda j} \leq 1$$

19 T (19 14 19 1

Depending on yeometry there are tables that drouterings the view boitors lon James qui no down double interpol

q Ja Pag Ja Az

Fir + Fix Generally

Reupronts

Ax Rig = Ar Pfi

Emboure Pula

 $\sum_{i} \mathcal{F}_{i,i} = |$

- all energy httis I unlove hits name other unbore in the endowne

Selb View Porter

Pi = 0 Convex

Ex>0 pamone

Composite Surface View Forton

C O C

$$A_{(1+3)}F_{(1+3)(2+4)} = A_{2}F_{2(1+3)} + A_{1}F_{1(1+3)}$$

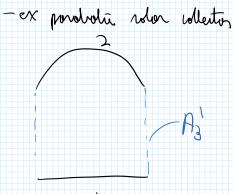
$$= A_{2}(F_{21}+F_{23}) + A_{1}(F_{11}+F_{113})$$

$$B_{1} S_{1} = F_{34} \quad A_{3} = A_{2}$$

$$A_{2}F_{21} = A_{2}F_{34} = A_{3}F_{34}$$

$$A_{3}F_{21} = A_{3}F_{34} = A_{3}F_{34}$$

$$A_{4}F_{43}$$


 $P_{(1+3)}F_{(1+3)}(2+4) = 2A_2F_{21} + A_3F_{23} + A_4F_{41}$ Prom toble Prom toble

View Factor

1. Use tolks for 2d-31 geneting

2. Use rules

Hypothelial Surbores (viel te suplity V.P. colulations)

Nodiate Exdruge
- orana isothernal
- no temp change arrows infrare
- opogue (2 = 2) and lithus gray (6 = a)
- mon- portuguiting medium

Northe Heat Rote

- columbe not heat flow of of a bollerye, binding draduation

(= 9" A
$$q_{\hat{\lambda}} = J_{\hat{\lambda}} A_{\hat{\lambda}} - b_{\hat{\lambda}} A_{\hat{\lambda}}$$
 compliated

Funta GiAi 1. Treates compute

$$= \mathcal{E} \left[2^{5} U^{y} L^{2} - 2^{9} U^{y} L^{3} \right]$$

$$q_{\lambda} = \begin{cases} \frac{J_{\lambda} - J_{\hat{j}}}{A_{\lambda} F_{\lambda \hat{j}}} & \text{Ryeon, } \lambda_{\hat{j}} \end{cases}$$

$$\ell_{\hat{\lambda}} = J_{\hat{\lambda}} \mu_{\hat{\lambda}} + \frac{1}{\beta_{\hat{\lambda}}} \left(J_{\hat{\lambda}} A_{\hat{\lambda}} - \epsilon_{\hat{\lambda}} E_{6\hat{\lambda}} A_{\hat{\lambda}} \right)$$

From Synety $F_{i\hat{g}} = \frac{1}{3}$

Nevien

- hypothelist surface - vien bottes rules

Elimite 62 Az

1. duetty compute modulion from all roune - leads to you in terms of yearstand rentine

2. Substitute volusiets/emminue pour expression - level to gin terms of unfore rentime

the reductive remotions concept to study robustion thousant

E lethins

Thermal Nodution

I rod J, J₂

 $T = (V_1 - V_2) | 0$

Q= Q" A = (J- J2) / R rod

Mules for winting Nembers Series

- rune q young through all of their

a Ri Ri Rey = R1+R2+R3 Rentos du Parollel $\frac{1}{\text{Rey}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ Rodutie Energy Bolome at Surbore January Reconstruit Reconsis - Airistante Reconsis - Airistante Reconsis - Cintaine Reconsistence - Cintaine - Cint Pi-j bent leaving i handing on i

Pi-i heat leaving i handing i handing on i

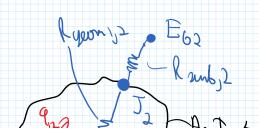
Pi-i heat leaving i handing i

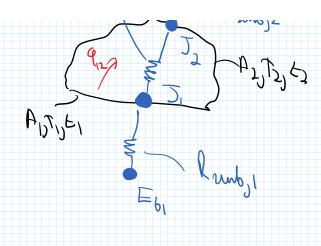
Surface Norde Merintano - futitous mode inside hall Epi te subore i

6 construl Spore Meintone

represents about up geometry of rodulise exchange

Letners runbores

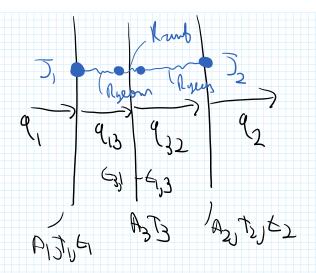

J. A. I.


Subore

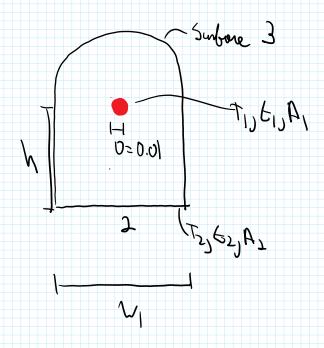
(A. R.) -1

(A. R.)

Two Surface Endoune


 $\frac{12}{E_{6}} \frac{1}{|E_{6}|} \frac$

 $Q_{12} = (J_1 - J_2) \cdot (A_1 R_2)$


5 inplications

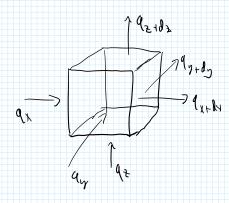
- Black lody > E=1 => E62=Ji

Nediction 5 held

Furnove Problem

Pour per und lengths requied bor 5.5. combitions What is temp of burnoue noll?

 $T_1 = 1500_3 \in_{1} = 1$ $T_2 = 500_3 \in_{2} = 0.6$ $E_3 = 0.9$ Insulating = 93 = 0


under thibben 2,5 7,7 = 15 so chather

Energy Polone on a Delpherential (V

DV= dilydz

- evaluate instituno (outhbus) every struge / every generation

tournes only condutie in Home and out Home

Cortesian Coordinates

 $(ln-Out) = (uln-Out)_{\chi} + (ln-Out)_{\xi} + (ln-Out)_{\xi}$ $(ln-Out)_{\chi} = \ell_{\chi} - \ell_{\chi+l_{\chi}}$

 $\begin{aligned} & \left(2x + kx\right) = \left(2x + \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + \frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx = -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \right \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial x} \middle|_{x} kx \\ & \left(2x - \frac{\partial e_{x}}{\partial x} \middle|_{x} kx + -\frac{\partial e_{x}}{\partial$

$$\int \mathcal{P}(4\frac{\partial I}{\partial \xi} = 1) \left(\frac{\partial^2 I}{\partial x^2} + \frac{\partial I^2}{\partial \theta^2} + \frac{\partial I^2}{\partial \xi^2} \right) + e^{111}$$

Cylindrial Coordinates?

5 phenil Coordinats?

(m-0m) = d - d + g +

(ln- Out) = 9- 90+lo

(In - Out) = 96 - 96+86

=> 3 (b 2 = 1 22+6/11

Del operaties du litherent coordinate systems

Inter Linds

15t order in tire, 2nd order in pare

1st order in tire, 2nd order in your (I.C. 20.C.

How to mite B.C.

In = Out -> lebt = right

Week intich / boundary conditions

One Dimensional Conduction - heat blows in I fretien

> Liney Heat Plon TET (X) Notal Heat How T=T(r)

Steels brilition

- temp doesn't dronge ut time

 $\frac{dt}{dt} = 0$

Loterian Example Hand / Technow to Solve Heat equations - no heat generation -1-0 heat blow - steely state Use Conductive Mexistances $Q = \frac{NT}{R} = \frac{T_1 - T_2}{R}$ Rowl = L thilmeso

Table w/ all of Pentones

Cutail Insulation thatmes

- conductive resistance inverses v/ thatmes

- concertive resistance deneures v/ thatmers

Angelet contact leads to additional thomas resistance

durane Connection?

- timese subore one

Fin Het Tromber Note

Comot just use bin area

How do ne buil q? Fin heat transfer rote

(f = - KA 46 Bx / 100

 $\frac{\partial^2 T}{\partial x^2} + \frac{1}{A(x)} \frac{\partial A_{c}(x)}{\partial x} \frac{\partial T}{\partial x} = \frac{KP(x)}{KA_{c}(x)} [T(x) - T_{\infty}]$

Use etc, or effricing

Generally, apptuable to ony fin shope

D(X)= 4 exp(mx)+ (2 exp(-mx)

An eoner voy Fin Efferency

9 = 2, 4. Ap 06

I find the brown equations in book tolk

TENHA

Fin anap

Usually We Hove on onony of bis

N-# of Firs

Ab- Total over ob exposed have

Ab- Surface Area of Single Fin

$$\frac{1}{n_0} = \frac{\nu}{n_0} + \frac{1}{n_0} = \nu n_0 + h_0 + h_0$$

$$q_0 = M_0 h A_b \theta_b = \frac{\theta_b}{k_0}$$

Chapter 5 - Transent Conduction

Steady state no longer volul

Lunged Copositions Method (Eories)
Vireit Solution of United Heat Equation (Much Hordes) Stored everyy in volume V Cumped Caparitione + Convertion at Boundary $\frac{\partial}{\partial \lambda} = \frac{T - T_{\mathcal{D}}}{T_{\lambda} - T_{\mathcal{D}}} = \exp\left(-\left(\frac{h A_{\mathcal{S}}}{SV_{\mathcal{C}}}\right) t\right) = \exp\left(-\frac{t_{\mathcal{C}}}{S}\right)$ ~= Row C = hay p Vc

Lectures Page 55

When con me une lumped coporatione model - tenperature should be nearly uniform througant object Trust Co Trust - Too

Dist Number

Bi = hL / Lc = chonestentie length

Norm while
Lon we lunged appositione to Bi & O. 1

Le is usually certes to edge distance

- (distance from largest heat difference)

General L.C

p Vc dt = Em - Earl + Eg

5 implifies its just connection

1.0 5 # For 8 or tan/W

solve tronnent heut eynotron dneitly - yetril out trie diversions

Condution Shape Parter 5 analytical relation to head equation

q = 5K(T1-T2)

Exorple problem - luged apouture 4.20

 $Q = 5K(T_1 - T_2) = T_1 - T_2$

R- 1 5K

heat ylans through bores/corners / edges

Redye, Roume, Rudl

1 = 12 1 g 1 f 6 l Roma Roll Pinte element method

Cornetion

- good is to bind h

Flow (No stip of embore)

Advertion
- energy transfer due to bulk bluid movement

h (75-700) Commute heat blux

 $-k \left(\frac{\partial T}{\partial y} \right)_{y=0}$ Condutre heat buy

 $h(T_5-T_2)=-k\frac{\partial T}{\partial y}|_{y=0}$

V DI

Network problem / Shape Factor

over floring through

(all = (pe) u dyd 2

(x-relaids
everyg per und non

Full everyy equation to volid at any point

How to get T in the themal boundary large?

- B.(. loger is so this we can make simplifications

 $\frac{\partial}{\partial x} \ll \frac{\partial}{\partial y} \supset \frac{\partial x^2}{\partial y^2} \gtrsim \frac{\partial}{\partial y^2} \approx \frac{\partial}{\partial y^2} \approx$

products in & diestion one much longer than gradients in & diestion

N SCN.

Apply B.L. Amupture

 $\frac{1}{\sqrt{3}} + \sqrt{\frac{3}{3}} = \alpha \frac{3}{3} + \frac{\alpha}{3} \left(\frac{3\alpha}{3\gamma} \right)^{2}$

U Jx + V Jy = a Jy2 + DCp (Jy) 2= K) thermal βcp) librurints wortend What is its outral memerial value Depends on Tu, and Neull continuity, x-momentum etc h V.S. X, con mohe on estimate Approx $\frac{\partial T}{\partial y}|_{y=0} \simeq \frac{T(s)-\overline{I}(o)}{s-o}$ How to find h w/o roling for T)

for high meed blow

Lectures Page 62

- try to perform experiments Non dinensionalize equations.
- cornect P.L. eq to dinensionles born Introdus diviensionles vouitles), u, 7°, pa etc. Slight différences Neg dinersionles groups 1 Reynolds # Pr No Nen dinensionless vorwhle Prontte Wunder (Pr) Pr = X d= Rpr - ratio of momentum of diffurinds Non-dinensionalize h Nusselt Number Nu= ht

huersionles heat transfer webbrier

Puit # Vs Nusselt # What is delberno

Bi=hL Nu=hL

What voriables do T depend on?

Free streum Pressure brodient - shore of object determines boul pressure grolients

Ta = Ta (py ga De Je Je Je Je

Weed to run experiments @ -different Negrolds #'s - littleant shoped digits

- lettaril Pr # 5

- xo is re core about lord NeTF

We con also buil ony properties

 $\overline{Nu} = \frac{\overline{h}L}{K}$ $\overline{h} = \frac{1}{A_5} \int h \partial A_5$

Loud Vs. Any Nurselt and Sh. 77

Long remore portrond dependance

Boundary layer Equation bor Energy

- simplifying bull convertie everyy belome exerction

Won-dinensimology > 3 New dinensimbles groups

Negnold #

Pr = T

steman

Wusselt #

Mu= KL = Or / b=D

Con me Vusto K to bind h

Functional Dependency

- book for overage the

Wu = LL

 $\overline{W}_{n} = \overline{W}_{n} \left(\text{le } P_{n} \frac{\partial P_{\infty}^{n}}{\partial x^{n}} \right)$

determined by shope of the object

Exomple

Q = h A2 (t52 - T0,2)

Na = Na ?

Ne,=Rez) Pr,=Prz) Shape 1 = Shape 2

(geometrially rimites

 $\overline{h}_1 L_1 = \overline{h}_2 L_2$

h2= h, L1

Az Lz

Heat and Mass Transfer Amalogy Unition Collins Amalogues

Moss tramper 5 analogous to heat transfer

Mass Diffusion > heat conduction } Molecular transport

Mass Convertion > heat convection

Lectures Page 6

CA: Comentation of Spices Mond/m3

(As L (As

Comentration BL thinknes Sc is grade @ which

CA = (A,6 - (A) = 0,99

WA: Molor Plux of Species A

na: Mos Flux of years

hm? Non transles wellbruint

DAD: Mors Subburion Welbrurent of years A in years &

Da: benut of years

3=MACA

noin Mus Nu = Nuz

Mb D le,=lez

(D) Pr = Prz

3 Shape, = Shape 2

Moss Tromber

- tro yeurs

- A (les dominant)

-0 (Medin, mojorty)

Comentation Boundary Loyer

- some governing equations os we do for heat tramber

- equities one some vouilles one différent

- molor or moss boris

- how to get him?

- rome provers as yetting h

- species bolone onos differential (.V.

- Apply B.L. oppnox

Heat and Mos Andog $= \frac{1}{h_{m}} = \frac{1}{h_{m}} = \frac{1}{h_{m}} \left(\frac{h_{m}}{h_{m}} \right)^{n} = \frac{h_{m}}{h_{m}} = \frac{h_{m}}{h_{m}} \left(\frac{h_{m}}{h_{m}} \right)^{n} = \frac{h_{m}}{h$ Anne n=1/3 unless told attenuix Unton-Coulling Analogy - It you know brution welfringer you can get h All have to do n/ products of B.L. at mooree -volubbecome

Evopontre body

- enoposatre blux

Qutent = ing hm A (DA5-DA00)

Ptotal = Premitte + Plotants

I meet evoporation

taperature

fifteense

Mener

Limped Capaulaine

Li = Characterista Length (mox 7 Intherence)

Bi = hLi

Sneety human

Na= 1 % A

Person is running => convertie more flux

No = hm (Snot was stan - Da (30'C))

rempose W.V. wore ment bee steam

Protrup =

~ (35°C)

Nr= 4 /m (b 1 (35°C) - b (38'C))

Nr= 4 pm (brother (35°C) - b (38'C)) how to get him Heat and more and only $\frac{1}{h} = \frac{1}{0} \left(\frac{0_{AB}}{0_{AB}} \right)^{N}$ how to we get h Premile Ty A (Ty-To) q loten =

9 total = 9 muttle + 9 total

Corelation

nay amud mad ether-

- Poner Low

Thursday, April 22, 2021 12:08 PM

Internal Flow

Orlberone from external How

Boundary layers eventually grow together

-@ distance X, & & bully developed blow

Each boundary large has its own lengths

Before q"-h(ty-ta)

Now & = h(ts-Tm)

(mean blund temperature

Themolly Pully developed

Muo-hD 5 wontent

For on drothered wall w/ under was retur Nu= 3.66 derned as

Colubration Outlet Tenperature - meed what temperature - length of pure heat transfer per und length

Everyy Golome

Wall heat in + odveition in = adveition out 4 abrix = Plime A_ nor restront onen nn. mean blund relants

deme en Par

permetes Atm = 0" p dibbertuil ey for bluid temp in a pipe @ poution x antequite to get Tm(x) Content Surface Temp? $T_{m}(x) = T_{5} - (T_{5} - T_{m,x}) \exp\left(-\frac{P_{x}}{m} \frac{T_{x}}{h}\right)$ Heat Transfer Note Interprete surposee heat blus over total pipe S.A. q=mip(Tmo-Tmi) Lot of Internal Flow Correlation

Lectures Page 77

Wend Shoped Tube, we Hydroulie Dunietes Apply Heat and Moss Analogy

Watural Convertion

-connection in observe of hulk blind motion

- No pup/bon, bee strems velous & D

- dennts, grodueril
- l'expertitre diblerence

-Doby bone - grounds

Untible => (mildin => A breturn

Tuesday, April 27, 2021

12·12 PM

Fully developed blom

Neg (Sho) and h (hm) are constant

Everyy Polome

- leads to ditto ey for meen fluid temp

Heat transferred to blind in interno blow

e= micp (Tmo-Tmi)

Turbulent Flow

Neo > 2300

Natural/Free Connection

- Forced wretion h = lorder of magnitude larger

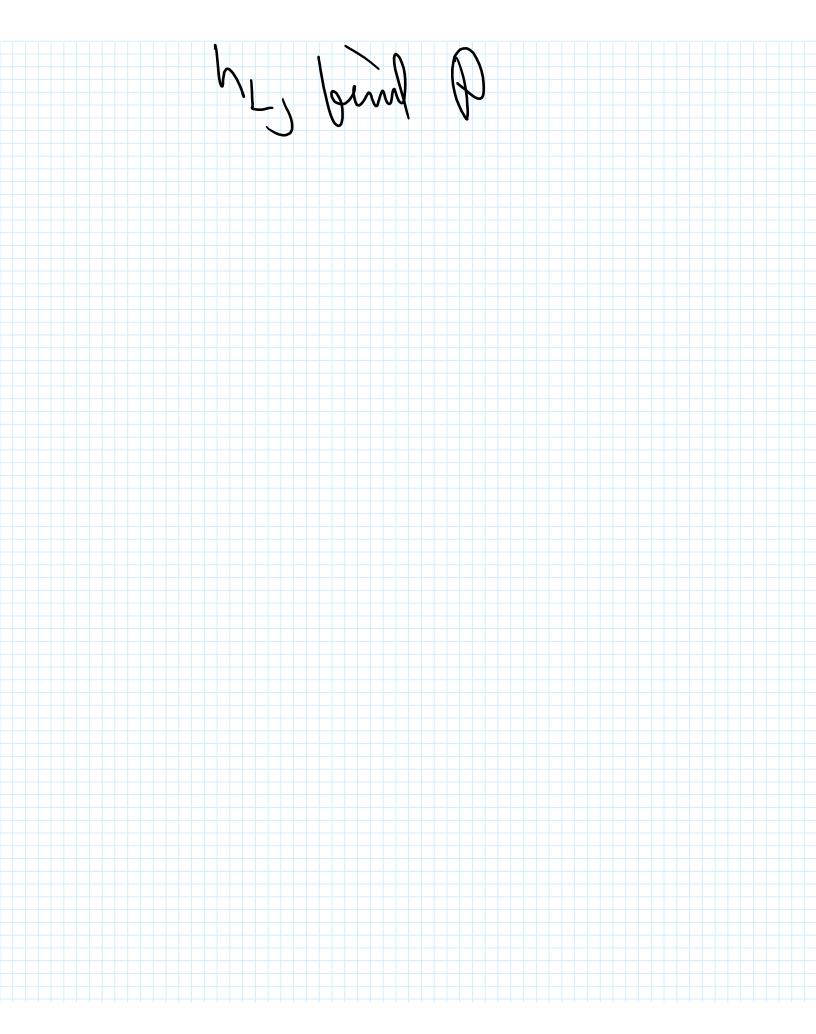
-cont neglet robotion organose Stort ~1 Poundary Layer Equations B= Volundra Denne exposión web. Von Ineusonolystion Grodust number (GC)

6-7-16 (15-7-) L3

Rufterigh Wunter

Na = 6, Pr

We rough + to believe turbulent


Tr - 75+ To & but temp , we bor evaluating

This properties

nishernes sert lunetul

lots of bostos Bostris Constations

contesser neutomolinos note A

